Università Degli Studi dell' Aquila

Distributed Systems: Mid-term Evaluation

Tuesday, November 24th, 2015 - Prof. Guido Proietti

Write your data \Longrightarrow	Last name:	First name:	ID number:	Points
EXERCISE 1				
EXERCISE 2				
TOTAL				

EXERCISE 1: Multiple-choice questions (20 points)

Remark: Only one choice is correct. Use the enclosed grid to select your choice. A correct answer awards 3 points, while a wrong answer awards a -1 penalization. The final result will be given by summing up all the obtained points (0 for a missing answer) , by normalizing on a 20 base.

1. Let $f(n)$ and $g(n)$ denote the message complexity of the Chang ξ Roberts algorithm in the average and in the worst case, respectively. Which of the following asymptotic relations is wrong?
*a) $f(n)=\Theta(g(n))$
b) $f(n)=O(g(n))$
c) $f(n)=o(g(n))$
d) $g(n)=\Omega(g(n))$
2. Specify the largest among the following classes of rings for which the leader election problem can be solved through the Hirshberger E Sinclair algorithm:
a) asynchronous, anonymous, uniform, no-synchronized start
c) asynchronous, non-anonymous, uniform, synchronized start
b) synchronous, non-anonymous, uniform, no-synchronized start
*d) asynchronous, non-anonymous, uniform, no-synchronized start
3. The most efficient leader election algorithm for a synchronous ring with n processors, non-anonymous and uniform, with minimum id m has a message complexity of:
a) $n \quad$ b) it does not exist
c) $\Theta(n \cdot m)$
*d) $\Theta(n)$
4. Let us consider the leader election algorithm for a synchronous ring with n processors, non-anonymous and uniform. Let the minimum id in the ring be equal to 2^{n}. Then, the algorithm has a number of rounds of:
a) $O\left(n \cdot 2^{n}\right)$
b) $O(1)$
*c) $O\left(n \cdot 2^{2^{n}}\right)$
d) $\Theta(n)$
5. Let $f(n)$ and $g(n)$ denote the message complexity of the asynchronous versions of the Prim and the GHS algorithm, respectively, when executed on a dense graph, i.e., with $m=\Theta\left(n^{2}\right)$. Which of the following asymptotic relations is correct?
a) $f(n)=\Theta(g(n) \cdot n)$
*b) $f(n)=\Theta(g(n))$
c) $f(n)=o(g(n)$
d) $f(n)=\omega(g(n))$
6. Let $f(n)$ and $g(n)$ denote the asymptotic number of rounds of the synchronous versions of the Prim and the $G H S$ algorithm, respectively Which of the following asymptotic relations is wrong?
a) $g(n)=O(f(n))$
*b) $f(n)=\Theta(g(n))$
c) $f(n)=\Omega(g(n))$
d) $f(n)=\omega(g(n))$
7. The randomized algorithm for finding a maximal independent set running on a graph with n nodes and with degree $\Theta(\sqrt{n})$, with high probability has a number of phases in the order of:
*a) $O(\sqrt{n} \log n)$
b) $O(1)$
c) $O(\sqrt{n})$
d) $\Theta(n \log n)$
8. Let G be an n-vertex graph of degree Δ. What is the approximation ratio guaranteed by the greedy algorithm for the minimum dominating set problem?
*a) $H(\Delta+1)$
b) $H(\ln \Delta+1)$
c) $\ln (H(\Delta))$
d) Δ
9. In the bakery algorithm with n processors, which of the following is the second semaphore of the entry section of p_{i} ? a) wait until Choosing $[j]=$ false or (Number $\left.[j], j)>(\operatorname{Number}[i], i) \quad{ }^{*} b\right)$ wait until Number $[j]=0$ or (Number $\left.[j], j\right)>(N u m b e r[i], i)$ c) wait until Choosing $[j]=$ false \quad d) wait until Number $[j]=0$ or (Number $[j], j)<($ Number $[i], i)$
10. In the bounded-space 2-processor Mutex algorithm with no lockout, which of the following is the first semaphore of the entry section of p_{i} ?
*a) wait until $\mathrm{W}[1-i]=0$ or Priority $=i \quad \mathrm{~b})$ wait until $\mathrm{W}[1-i]=1$ or Priority $=$
c) wait until $\mathrm{W}[1-i]=0$ or Priority $=1-i \quad \mathrm{~d}$) wait until Priority $=i$

Answer Grid

	Question									
Choice	1	2	3	4	5	6	7	8	9	10
a										
b										
c										
d										

EXERCISE 2: Open questions (10 points)
Remark: Select at your choice one out of the following two questions, and address it exhaustively

1. Describe and analyze the slow-fast message algorithm for the leader election problem
2. Describe and analyze the synchronous version of the $G H S$ algorithm for the minimum spanning tree problem.
